286 research outputs found

    Short term outcome after left atrial appendage occlusion with the AMPLATZER Amulet and WATCHMAN device: results from the ORIGINAL registry (saxOnian RegIstry analyzinG and followINg left atrial Appendage cLosure)

    Get PDF
    Background: Various randomized multicenter studies have shown that percutaneous left atrial appendage closure (LAAC) is not inferior in stroke prevention compared to vitamin K antagonists (VKA) and can be performed safely and effectively. Aims: The prospective multicenter ORIGINAL registry in the Free State of Saxony (saxOnian RegIstry analyzinG and followINg left atrial Appendage cLosure) investigated the efficiency and safety of LAAC with Watchman or Amulet device in a real word setting. A special focus was put on the influence of LAAC frequency on periprocedural efficiency and safety. Methods and results: The total of 482 consecutive patients (Abbott Amulet N = 93 and Boston Scientific Watchman N = 389) were included in the periinterventional analyses. After 6 weeks, 353 patients completed the first follow-up including transoesophageal echocardiography (TEE) (73.2%). Successful LAAC could be performed in more than 94%. The complication rate does not significantly differ between device types (p = 0.92) according to Fischer test and comprised 2.2% in the Amulet and 2.3% in the Watchman group. The kind of device and the frequency of LAAC per study center had no influence on the success and complication rates. Device related thrombus could be revealed more frequently in the Watchman group (4.5%) than in the Amulet group (1.4%) but this difference is still not significant in Fisher test (p = 0.14). Same conclusion can be made about residual leakage 1.1% versus 0% [not significant in Fisher test (p = 0.26)]. Dual antiplatelet therapy followed the intervention in 64% and 22% of patients were discharged under a combination of an anticoagulant (VKA/DOAC/Heparin) and one antiplatelet agent. Conclusions: The ORIGINAL registry supports the thesis from large, randomized trials that LAAC can be performed with a very high procedural success rate in the everyday clinical routine irrespective of the used LAA device (Watchman or Amulet). The postprocedural antithrombotic strategy differs widely among the participating centers

    Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3  eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV - provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst GRB 221009

    Constraining High-energy Neutrino Emission from Supernovae with IceCube

    Get PDF
    Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae, and for combined emission from the whole supernova sample through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. The overall deviation of all tested scenarios from the background expectation yields a p-value of 93% which is fully compatible with background. The derived upper limits on the total energy emitted in neutrinos are 1.7×1048^{48} erg for stripped-envelope supernovae, 2.8×1048^{48} erg for type IIP, and 1.3×1049^{49} erg for type IIn SNe, the latter disfavouring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that strippe-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9% respectively to the diffuse neutrino flux in the energy range of about 103^3−105^5 GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions

    IceCat-1: The IceCube Event Catalog of Alert Tracks

    Get PDF
    We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT

    A Search for IceCube sub-TeV Neutrinos Correlated with Gravitational-Wave Events Detected By LIGO/Virgo

    Full text link
    The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1 and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2 and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a non-detection of a significant neutrino-source population with this test.Comment: Submitted to Ap

    Constraining High-energy Neutrino Emission from Supernovae with IceCube

    Get PDF
    Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 1048^{48} erg for stripped-envelope supernovae, 2.8 × 1048^{48} erg for type IIP, and 1.3 × 1049^{49} erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 103^3–105^5] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions

    Measurement of Atmospheric Neutrino Mixing with Improved IceCube DeepCore Calibration and Data Processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a detailed treatment of systematic uncertainties, with significantly higher level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05\sin^2\theta_{23} = 0.51\pm 0.05 and Δm322=2.41±0.07×103eV2\Delta m^2_{32} = 2.41\pm0.07\times 10^{-3}\mathrm{eV}^2, assuming a normal mass ordering. The resulting 40\% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory

    Full text link
    Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in {\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above 100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons). While at these high energies the Klein-Nishina effect suppresses exponentially leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these {\gamma}-ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula and LHAASOJ2226+6057

    Graph Neural Networks for low-energy event classification & reconstruction in IceCube

    Get PDF
    corecore